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The solution of the second fundamental problem of the theory of elasticity is 
obtained for a hyperboloid of revolution of one sheet. As an example we solve 

the problem of elastic deformation under the action of a concentrated axial for- 

ce situated at the center of symmetry of the hyperboloid. under the assumption 
that the boundary surface is rigidly fixed. 

It is proved in [1] that by using oblate spheroidal coordinates and the general- 
ized Mehler-Fock integral expansion, one can obtain the solution of the funda- 
mental problems of the mathematical theory of elasticity for domains bounded 
by a hyperboloid of revolution of two sheets. In the present paper similar resu- 
lts are obtained for the case of a hyperboloid of revolution of one sheet by using 
integral expansions with respect to spherical functions which have been consid- 

ered in @. 33. The characteristic property of these expansions is the presence 
of a discrete part in the spectrum of the eigenvalues and therefore in the expan- 
sion of an arbitrary function there exists a finite algebraic sum together with the 
integral_ 

1. We consider particular solutions of the equations of the theory of elasticity [l] 

&graddivu+Au=O, u=iu+jv+kw (1.f) 

Here u is the displacement vector and P is Poisson’s ratio. 

The first two solutions obtained from the equations 

(1.2) 

The third solution is constrycted with the help of the vector potential B 

u =x [4(1 -p)B-RKrad(r - B)] 

II 77 B,i + B,j + B,k, AB=O 
Here G is the modulus of elasticity. 

(1.3) 

To solve Eqs. (1.2). (1.3), we make use of the oblate spheroidal coordinates, which 
are defined by the equations [4] 

z = c ch a sin p cos (p,’ v = c ch a sin fi sin cp, z = cshacosp (1.4) 

(-M<a<-t-w, O<B<&, -Jt<cp<+n) 

The totality of particular solutions of Laplace’s equation which are appropriate for 
the examination of boundary value problems where the boundary conditions are given 
on the surface of a hyperboloid of one sheet, is of the form [S] 
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Here the parameter Y has a continuous and a discrete spectrum, while (pVm (z) and 
qum(z) are, respectively, the even and odd combination of spherical functions with 

imaginary arguments [3 3. 

2, As it follows from (1.2), (1.3), Eq.(l. 1) reduces to Laplace’s equation for each 
component of the vectors u and B. 

The particular solutions (1.5) of Laplace’s equation admit four kinds of solutions, di- 

ffering by the type of symmetry with respect to the angle ‘Cp and the variable (IL. For the 

sake of simplicity, we consider only the case of displacements w which are symmetric 

with respect to the planez = Oand the planecp = &In this case, the solution of EqsJl. 2) 
can be obtained by the superposition of particular solutions of the form 

u(l) 
vm = a, (Y) q$+’ (sh a) PTrn+’ (cos P) cos (m - I) cp WI 

uw rm = - am (v) $y-’ (sh a) pymfl (cos p) sin (m - 1) cp 

.&I 
vm =~,w(V-wv - m + i) cpy (sh a) cm (cos p) co9 mf$ 

(m = i, 2, 3, . ..) 

J2) 

;tg, 

= b, w (v - m) (V + m + 1) I#:+’ (sh a) P;+l (COS p) cos (m $1) cp 

vm = b, (v) (v - m) (v + m + b) *y+’ (sh a) cm-’ (cos p) sin (m + 1) cp (2.2) 
,W 

vm = b, (v) ‘p: (sh a) P,” (cos @) cos mcp 

TO construct the solutions (2.1). (2.2) it is necessary to make use of the recursion rela- 

tions 

&hm mx 
-=22+ 1% 

?J v - m)(v c m + 1) 
dx 

4Lrn mi 
-=_--q- 

dx 39 + 1 

dkrn (v - mW+m+U 
-=~%“+ - d? J/x2 + 1 ‘pYS1 

(2.3) 

The components of the vector potential B are obtained by the superposition of parti- 

cular solutions of the form 

%Ynl =t - c,~ (v) (v - m) (v + m + 1) I#:+’ jsh a) Pyrnwl (cos p) cos (VI + i) 9 (2.4) 

9 liven: =-_C m (v)(v - m) (v + m + 1) $y+l (sh a) P,“-l (cos P) sin (m + 1) 9 

c J m&M = c, (v) tg2 pOcp (sh a) PF” (cos 8) cos mrp (m = 0, 2, 2,. .) 
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Substituting (2.4) into (1.3) we obtain for the components of the displacement vector 

at the boundary & -_ 00 

,W 
“In cos(m+ l)cp 

if(R) 
= -cm (v) (v - m) (G+ m + 1) A, (v) $y+’ (sh a) r 

*m sin (m + 1) cp 

i l/2 tg 1/~Pnc, (v) *T+ (sh a) 
cos(m- i)q 

sin(m-i)cp 

w$ -= c,,% (v) A, (v) cp,‘” (sb a) co9 mp P-5) 

A, (Y) = (3 - 4p) Py-1 (cos &x) .+ 112 tg pC (v + m +.Z) (v - m - 1) P;m-a (cos PO) 

h,“(v) = tg2 &I (3 - 4p) P;” (cos /$) - tg &I (v + m + 1) (v - m) Pirnwl (cos &I) 

(m = 0, 1, 2, . . *) 

v=v+=i’c-‘I2 (O<?<ao) 

v-v 7% = rn - St- 1 (fhJ=JO; 1,,2, . . ., a’), n* = [I/Z (m - lj] (m = 1, 2, 3, . . .) 

Thus, the components of the displacement vectors at the boundary 0 = & can be writ- 
ten in the form 1333 

X cos mcp + i { 5 a,,2n (2n*f I- 2m) qg_an_l (sh a) Pk?z,+I (cos b)} cos mp 
m&j n=o 

+ i { jj b,, (2114 1) (20 - 24 lu,“$,_, (sh a) P;‘!$_, (COS p,,)} 
cos mcp 

(2.7) 
m=l n=* sin mcp 

m-0 0 

b, 6) T~_:-I,, (ah a) P&Y!,,l (cos PO) dr) cos rnq + 

+ 5 { $ P,,,cF~_~_~ (sh a) PG?a,,-l (~0s %I} cosmrp 
m-1 71~0 
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wa = i (1: cm (T) A, (VT) T~_,lz W a) dr) cos mcp + 
m=o iJ 

+ fj { 5 7mnC&n_l (~114 Am tv,)} cos mv 
m=l 714 

9”” (2) E 0 (m = I, 2, 3, . . .) (2.9 

6. TO solve the second fundamental problem of the theory of elasticity, we will con- 

sider taking into account the particular solutions (2.6)-(2.8). that the displacement vec- 
tor at the boundary@ = f&&s given in me cylindrical system of coordinates p, ‘p, z 

up= i A,(a)cosmcp, u9 = i B,(a)sinmcp 

m=o m=1 

w= 
5 

D, (a) co9 mcp (3.1) 
m=o 

Here A, (a) and Bm (a)are odd functions while D,,, (a)is an even function of 0~. We introd- 
uce the auxiliary functions 

5~)(a)=1/n[Am(a)+Bm(a)l, m a 1(-) ( ) = */z [ -4, (a) - B, (3) 1 (3.2) 

(m = 1,2,3,...) 

The functions (3.1).(3.2) must satisfy the conditions of the expansion theorem [3] 

IF) (a) = i %? (r) I$?$, (ah a) dr + 5 i~&$$\_, (ah a) (3.3) 
?I==0 

n* 

0, (a) = T z,,, (7) cpz_,,, (ah a) dr + 2 ~,,,,,(~~_s,,-t (sh a) 
b n=o 

Equating (3.1) with the solutions (2.6) - (2.8) at the boundary8 = fi,,, from (3.2) we ob- 
tain for the coefficientso, (r)s 6, (r), c, (r)the system of algebraic equations 

a, (T) qJ!!;; (cos PO) - ‘/2cm (r) tg WO~JT!,,, (cos PO) = -i&’ (r) (3.4) 

c, (r) h, (v,) - b, (t) P;,!!!;f @OS PO) = 72) (T) [rz -I- (m + WI-’ 

.=, W 1~~ + (m - WI P;Z!tl, (cos PO) -I- b, (T) PiT?,,, (~0s PO) + cm 6) h,,,’ (\‘J = 0, (9 

(m = 1, 2, 3,. . .) 

To determine the numbers am,,. hrnn, Ymnwe have the system of algebraic equations 

u,,P;:;;_, (cos 30;~ ‘&* tg l/z POP;:*n_l (co5 PO) = X, (3.5) 

rmnhm (vJ - p,,P;~;~_, (cos PO) = (21~ + 1)-l (am - 2n)-’ 7!:2 

a mn211 (2n + 1 - 2m) 4 zmnPt;l)-nqn_l (cos PO) I- Tlll,,htn’ (X’,J = fi”,,, 

(n == 1, 2, 3, . . . [‘/z (n1 - i) j; m = 3, 4, 5, . .) 
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For the case )Z cl: Othe system of algebraic equations can be written in the form 

4‘ We consider the case of the axial symmetry of the boundary conditions, In this 
casem = Oand the expansions (2.6) - (2.6) have only integral terms. In addition, by 
virtue of (2,3), the solutions (2,l). (2.2) cease to be linearly independent and it is nec- 
essary to puta, (T) t= &From the solutions (2.2),(2,5) it is easy to obtain the components 
of the displacement vecror at the boundary &I = fro 

~P=j~~‘-+- :j[~d(+)k(r)-bBOp~~,,,(COSB0)1~~~_,~,(sha)di (4,1) 
0 

w = 1 [eo (~1 no‘ (~5) + bo (4 &A,, @OS PO)1 ‘Pit-t/, @h ~1 dr 

Here 
0 

-l h b) = (3 - 4~) Pi,_,,* @OS Da) - ‘Is tg ‘/a PO x 

X k*7_*,, @OS PB) - (+ + +) q:_*,, (cos Paf f 

ho’ f7t = tg2 PO t3 - 4PI pi~J~, tcos PO) -t- Q BO (7’ + */C) p&f, tcos PO) 

Substituting (4.1) into the boundary conditions (3.1) and making use of the expansion 
(3.3). we obtain a system of algebraic equations for the determination of the coeffici- 
ents 4 (f), CO.(T) 

co (I) ;b (r) - bo (T) JQ_,,, (CQS PO) = (+ + ‘N” 4% (r) (4.2) 

cO (x) ho’ b) + bo tr) pi~_%/t (COSPo)=Do(r) (O<r<=) 

Example. We consider the elastic equilibrium of a hyperboloid of revolution of 
one sheet under the action of a concentrated axial force P,situated at the center of symmetry 
and having the boundary@ S= fiBrigidly fixed. We divide the components of the displac- 

ement vector into two terms 
=@ = upg - Q, W=tog--W* (4.3) 

Here I+,~ and w,, are displacements created by such a force in the unbounded space ES] 

QP' 
Ii 

PO wo =Q($+v), Qzs ’ 161~s (1 - p) ’ R = Jfp=qs (4.4) 

The dlsp~acernen~ up, , w, must satisfy Eq, (1.1) for the boundary conditions 6 x & 

To find the functionsAt, (T), Do (r)we make use of the expansion [S] 

(4.5) 

(4.6) 
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Differentiating (4. d) with respect to the parameters a and Bn and adding the obtained 
expansions with the corresponding coefficients, we obtain 

(4.7) 

The displacements ur,, ~,at the boundary0 = @an be represented in the form of the 
expansions (4.1). The coefficients If,, (z) and cI) (T) are determined from the system of __ 
equatrons (1. a), wnere,;, ’ (~1 andz,’ (r)are given by Eqs. (4. ‘i), (4. 8). 

The author expresses his thanks to N. N. Lebedev and Ia. S. Ufliand for advice during 
discussions on the paper. 
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